Electroencephalography (EEG) is a non-invasive neuroimaging technique that measures the electrical activity of the brain through electrodes placed on the scalp. EEG can be used for various research applications, including studying brain function and activity, identifying neurological disorders, and investigating the effects of drugs or other interventions on brain activity. EEG is particularly useful for studying brain activity in real-time and identifying the timing and location of brain activity associated with specific cognitive processes or behaviors. It can also be used in clinical settings to diagnose and monitor neurological disorders such as epilepsy, sleep disorders, and traumatic brain injuries. Additionally, EEG can be used to investigate the effects of various interventions, such as cognitive training or neurofeedback, on brain activity and function.
For surfers, catching the perfect wave can induce a state of pure ecstasy known as the “stoke”. But what’s happening in the brain during this ultimate ride? Wearable Sensing created a custom dry EEG system that measures brainwaves during surfing. They partnered with Red Bull to use this technology on professional surfers to uncover the neurophysiological aspects of surfing. The dry EEG system is worn on the head like a swimming cap, and it allows for the measurement of brain activity in real-time during surfing. By studying the brainwaves of surfers during their best rides, researchers hope to understand what goes on in the brain during moments of flow and peak performance, and ultimately unlock the secrets to achieving that elusive state of “stoke”.
In this study, wearable sensors and machine learning-based algorithms were used to predict hypoxia in-flight. The group used Wearable Sensing’s dry-EEG technology to collect sensor data from 85 participants during a two-phase study. Participants wore aviation flight masks, which regulated their oxygen intake while performing cognitive tests and simulated flying tasks. EEG data was collected and analyzed using principal component analysis and machine learning algorithms, including Naïve Bayes, decision tree, random forest, and neural network algorithms, to classify the data as normal or hypoxic. The results showed high sensitivity and specificity, indicating potential for developing a real-time, in-flight hypoxia detection system.
This paper proposes a protocol for assessing stress using wearable sensing technology, including Electroencephalography (EEG), Electrocardiography (ECG), and the Perceived Stress Scale, in combination with a Virtual Reality phobia induction setting. Wearable Sensing’s dry EEG technology is used to measure brain activity and investigate functional brain connectivity associated with stress. The proposed protocol can be expanded with the incorporation of machine learning algorithms for automatic stress level classification.
Gwon, Daeun; Ahn, Minkyu
Motor task-to-task transfer learning for motor imagery brain-computer interfaces Journal Article
In: NeuroImage, pp. 120906, 2024.
@article{gwon2024motor,
title = {Motor task-to-task transfer learning for motor imagery brain-computer interfaces},
author = {Daeun Gwon and Minkyu Ahn},
doi = {https://doi.org/10.1016/j.neuroimage.2024.120906},
year = {2024},
date = {2024-10-28},
urldate = {2024-01-01},
journal = {NeuroImage},
pages = {120906},
publisher = {Elsevier},
abstract = {Motor imagery (MI) is one of the popular control paradigms in the non-invasive brain-computer interface (BCI) field. MI-BCI generally requires users to conduct the imagination of movement (e.g., left or right hand) to collect training data for generating a classification model during the calibration phase. However, this calibration phase is generally time-consuming and tedious, as users conduct the imagination of hand movement several times without being given feedback for an extended period. This obstacle makes MI-BCI non user-friendly and hinders its use. On the other hand, motor execution (ME) and motor observation (MO) are relatively easier tasks, yield lower fatigue than MI, and share similar neural mechanisms to MI. However, few studies have integrated these three tasks into BCIs. In this study, we propose a new task-to-task transfer learning approach of 3-motor tasks (ME, MO, and MI) for building a better user-friendly MI-BCI. For this study, 28 subjects participated in 3-motor tasks experiment, and electroencephalography (EEG) was acquired. User opinions regarding the 3-motor tasks were also collected through questionnaire survey. The 3-motor tasks showed a power decrease in the alpha rhythm, known as event-related desynchronization, but with slight differences in the temporal patterns. In the classification analysis, the cross-validated accuracy (within-task) was 67.05 % for ME, 65.93 % for MI, and 73.16 % for MO on average. Consistently with the results, the subjects scored MI (3.16) as the most difficult task compared with MO (1.42) and ME (1.41), with p < 0.05. In the analysis of task-to-task transfer learning, where training and testing are performed using different task datasets, the ME–trained model yielded an accuracy of 65.93 % (MI test), which is statistically similar to the within-task accuracy (p > 0.05). The MO–trained model achieved an accuracy of 60.82 % (MI test). On the other hand, combining two datasets yielded interesting results. ME and 50 % of the MI–trained model (50-shot) classified MI with a 69.21 % accuracy, which outperformed the within-task accuracy (p < 0.05), and MO and 50 % of the MI–trained model showed an accuracy of 66.75 %. Of the low performers with a within-task accuracy of 70 % or less, 90 % (n = 21) of the subjects improved in training with ME, and 76.2 % (n = 16) improved in training with MO on the MI test at 50-shot. These results demonstrate that task-to-task transfer learning is possible and could be a promising approach to building a user-friendly training protocol in MI-BCI.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Jang, Dajeong; Kim, Han-Jong; Choi, Kyungah
Enhancing Student Learning in Virtual Classrooms: Effects of Window View Content and Time of Day Journal Article
In: IEEE Access, 2024.
@article{jang2024enhancing,
title = {Enhancing Student Learning in Virtual Classrooms: Effects of Window View Content and Time of Day},
author = {Dajeong Jang and Han-Jong Kim and Kyungah Choi},
doi = {10.1109/ACCESS.2024.3476982},
year = {2024},
date = {2024-10-09},
urldate = {2024-01-01},
journal = {IEEE Access},
publisher = {IEEE},
abstract = {As virtual classrooms, traditional physical classroom environments are transformed into flexible virtual environments, allowing customization of environmental elements to enhance student learning. This study explored the effects of window settings in virtual classrooms on learning experiences of students. Utilizing a within-subjects design, we simulated a virtual classroom environment with seven unique window settings and varied its view content (nature vs. urban) and time of day (daytime, sunset, and night). We also simulated a windowless condition. Thirty-five university students participated in the study and performed subjective evaluations and cognitive tasks. Moreover, their physiological responses were recorded using electroencephalogram measurements. The results indicated that environments with windows increased the perception of spaciousness and promoted a state of relaxed alertness, as evidenced by increased fast alpha brainwave activity. In contrast, settings without windows or with urban views increased the sense of presence. Daytime views positively affected valence, motivation, spaciousness, and concentration, whereas nighttime views were the least preferred. No significant differences were observed in cognitive task performance across the different conditions. These findings underscore the necessity of customizing virtual learning environments to meet individual user needs. By allowing students to adjust their virtual environments, educators and space designers can create more flexible and personalized virtual-reality educational spaces, ultimately improving learning outcomes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Harel, Asaf; Shriki, Oren
Task-guided attention increases non-linearity of steady-state visually evoked potentials Journal Article
In: Journal of Neural Engineering, 2024.
@article{harel2024task,
title = {Task-guided attention increases non-linearity of steady-state visually evoked potentials},
author = {Asaf Harel and Oren Shriki},
doi = {https://doi.org/10.1088/1741-2552/ad8032},
year = {2024},
date = {2024-09-26},
urldate = {2024-01-01},
journal = {Journal of Neural Engineering},
abstract = {Attention is a multifaceted cognitive process, with nonlinear dynamics playing a crucial role. In this study, we investigated the involvement of nonlinear processes in top-down visual attention by employing a contrast-modulated sequence of letters and numerals, encircled by a consistently flickering white square on a black background - a setup that generated steady-state visually evoked potentials. Nonlinear processes are recognized for eliciting and modulating the harmonics of constant frequencies. We examined the fundamental and harmonic frequencies of each stimulus to evaluate the underlying nonlinear dynamics during stimulus processing. In line with prior research, our findings indicate that the power spectrum density of EEG responses is influenced by both task presence and stimulus contrast. By utilizing the Rhythmic Entrainment Source Separation (RESS) technique, we discovered that actively searching for a target within a letter stream heightened the amplitude of the fundamental frequency and harmonics related to the background flickering stimulus. While the fundamental frequency amplitude remained unaffected by stimulus contrast, a lower contrast led to an increase in the second harmonic's amplitude. We assessed the relationship between the contrast response function and the nonlinear-based harmonic responses. Our findings contribute to a more nuanced understanding of the nonlinear processes impacting top-down visual attention while also providing insights into optimizing brain-computer interfaces.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Cha, Seungwoo; Kim, Kyoung Tae; Chang, Won Kee; Paik, Nam-Jong; Choi, Ji Soo; Lim, Hyunmi; Kim, Won-Seok; Ku, Jeonghun
Effect of Electroencephalography-based Motor Imagery Neurofeedback on Mu Suppression During Motor Attempt in Patients with Stroke Journal Article
In: Journal of NeuroEngineering and Rehabilitation , 2024.
@article{cha2024effect,
title = {Effect of Electroencephalography-based Motor Imagery Neurofeedback on Mu Suppression During Motor Attempt in Patients with Stroke},
author = {Seungwoo Cha and Kyoung Tae Kim and Won Kee Chang and Nam-Jong Paik and Ji Soo Choi and Hyunmi Lim and Won-Seok Kim and Jeonghun Ku},
doi = {https://doi.org/10.21203/rs.3.rs-5106561/v1},
year = {2024},
date = {2024-09-26},
urldate = {2024-01-01},
journal = {Journal of NeuroEngineering and Rehabilitation },
abstract = {Objective
The primary aims of this study were to explore the neurophysiological effects of motor imagery neurofeedback using electroencephalography (EEG), specifically focusing on mu suppression during serial motor attempts and assessing its potential benefits in patients with subacute stroke.
Methods
A total of 15 patients with hemiplegia following subacute ischemic stroke were prospectively enrolled in this randomized cross-over study. This study comprised two experiments: neurofeedback and sham. Each experiment included four blocks: three blocks of resting, grasp, resting, and intervention, followed by one block of resting and grasp. During the resting sessions, the participants fixated on a white cross on a black background for 2 minutes without moving their upper extremities. In the grasp sessions, the participants were instructed to grasp and release their paretic hand at a frequency of about 1 Hz for 3 minutes while fixating on the same white cross. During the intervention sessions, neurofeedback involved presenting a punching image with the affected upper limb corresponding to the mu suppression induced by imagined movement, while the sham involved mu suppression of other randomly selected participants 3 minutes. EEG data were recorded during the experiment, and data from C3/C4 and P3/P4 were used for analyses to compare the degree of mu suppression between the neurofeedback and sham conditions.
Results
Significant mu suppression was observed in the bilateral motor and parietal cortices during the neurofeedback intervention compared with the sham condition across serial sessions (p < 0.001). Following neurofeedback, the real grasping sessions showed progressive strengthening of mu suppression in the ipsilesional motor cortex and bilateral parietal cortices compared to those following sham (p < 0.05), an effect not observed in the contralesional motor cortex.
Conclusion
Motor imagery neurofeedback significantly enhances mu suppression in the ipsilesional motor and bilateral parietal cortices during motor attempts in patients with subacute stroke. These findings suggest that motor imagery neurofeedback could serve as a promising adjunctive therapy to enhance motor-related cortical activity and support motor rehabilitation in patients with stroke.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Yfantidou, I; Tsourvakas, G; Oikonomou, VP; Kompatsiaris, I
Consumer response to different discount sales promotional messages. An eye tracking and EEG experiment Miscellaneous
2024.
@misc{yfantidouconsumer,
title = {Consumer response to different discount sales promotional messages. An eye tracking and EEG experiment},
author = {I Yfantidou and G Tsourvakas and VP Oikonomou and I Kompatsiaris},
url = {https://eurasip.org/Proceedings/Eusipco/Eusipco2024/pdfs/0000962.pdf},
year = {2024},
date = {2024-09-04},
abstract = {This article presents a study of consumer behavior during the selection of products from a supermarket’s leaflet. There are many factors that can determine whether a particular product attracts consumers’ attention, such as price, brand, and sales discount. This study is focused on consumers’ preferences among the three most common sales discount types. For the purpose of the study a leaflet that is identical to a real supermarket leaflet was designed, to resemble a real-life experience. Eye tracking and EEG were used to record participants’ gaze and emotions while viewing the leaflet. The behavior of 42 participants was investigated and it was identified how valuable the clarity of the promotional message is. Moreover, EEG helped us analyze basic nonconscious preferences and cognitive processes, such as the effect of memorization, approach-withdrawal and workload in decision making.},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Georgiadis, Kostas; Nikolopoulos, Spiros; Kalaganis, Fotis P; Kompatsiaris, Ioannis; Laskaris, Nikos A
Assessing video advertising engagement via Nonlinear Intersubject Correlation Analysis of EEG and eye tracking dynamics Miscellaneous
2024.
@misc{georgiadisassessing,
title = {Assessing video advertising engagement via Nonlinear Intersubject Correlation Analysis of EEG and eye tracking dynamics},
author = {Kostas Georgiadis and Spiros Nikolopoulos and Fotis P Kalaganis and Ioannis Kompatsiaris and Nikos A Laskaris},
url = {https://eurasip.org/Proceedings/Eusipco/Eusipco2024/pdfs/0000957.pdf},
year = {2024},
date = {2024-09-01},
abstract = {A novel framework for assessing engagement through video commercials is presented. Deviating from the current approaches, here we cast the problem as nonlinear intersubject correlation analysis and pursue the collective (i.e. across-participants) treatment of EEG signals and eye-tracking measurements. Regarding brain dynamics, two well-known descriptors, namely spatial covariance and phase locking value, undergo transcription to their ‘hyperscanning’ equivalents. Regarding eye-related measurements, individual paths and pupillometric measurements are summarized at population level. Using data from a recording paradigm, where each participant independently watched a cartoon video interrupted by a commercial clip, we show that our approach can provide signatures of engagement to the content being delivered and reconstruct the level of appreciation of the potential consumers.},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Al-Ezzi, Abdulhakim; Arechavala, Rebecca J; Butler, Ryan; Nolty, Anne; Kang, Jimmy J; Shimojo, Shinsuke; Wu, Daw-An; Fonteh, Alfred N; Kleinman, Michael T; Kloner, Robert A; others,
Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau Journal Article
In: Communications Biology, vol. 7, no. 1, pp. 1037, 2024.
@article{al2024disrupted,
title = {Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau},
author = {Abdulhakim Al-Ezzi and Rebecca J Arechavala and Ryan Butler and Anne Nolty and Jimmy J Kang and Shinsuke Shimojo and Daw-An Wu and Alfred N Fonteh and Michael T Kleinman and Robert A Kloner and others},
doi = {https://doi.org/10.1038/s42003-024-06673-w},
year = {2024},
date = {2024-08-23},
urldate = {2024-01-01},
journal = {Communications Biology},
volume = {7},
number = {1},
pages = {1037},
publisher = {Nature Publishing Group UK London},
abstract = {Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer’s disease (AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Rho, Gianluca; Callara, Alejandro Luis; Scilingo, Enzo Pasquale; Greco, Alberto; Bonfiglio, Luca
Habituation of Central and Electrodermal Responses to an Auditory Two-Stimulus Oddball Paradigm Journal Article
In: Sensors, vol. 24, no. 15, pp. 5053, 2024.
@article{rho2024habituation,
title = {Habituation of Central and Electrodermal Responses to an Auditory Two-Stimulus Oddball Paradigm},
author = {Gianluca Rho and Alejandro Luis Callara and Enzo Pasquale Scilingo and Alberto Greco and Luca Bonfiglio},
doi = {https://doi.org/10.3390/s24155053},
year = {2024},
date = {2024-08-04},
urldate = {2024-01-01},
journal = {Sensors},
volume = {24},
number = {15},
pages = {5053},
publisher = {MDPI},
abstract = {The orienting reaction (OR) towards a new stimulus is subject to habituation, i.e., progressively attenuates with stimulus repetition. The skin conductance responses (SCRs) are known to represent a reliable measure of OR at the peripheral level. Yet, it is still a matter of debate which of the P3 subcomponents is the most likely to represent the central counterpart of the OR. The aim of the present work was to study habituation, recovery, and dishabituation phenomena intrinsic to a two-stimulus auditory oddball paradigm, one of the most-used paradigms both in research and clinic, by simultaneously recording SCRs and P3 in twenty healthy volunteers. Our findings show that the target stimulus was capable of triggering a more marked OR, as indexed by both SCRs and P3, compared to the standard stimulus, that could be due to its affective saliency and relevance for task completion; the application of temporal principal components analysis (PCA) to the P3 complex allowed us to identify several subcomponents including both early and late P3a (eP3a; lP3a), P3b, novelty P3 (nP3), and both a positive and a negative Slow Wave (+SW; −SW). Particularly, lP3a and P3b subcomponents showed a similar behavior to that observed for SCRs , suggesting them as central counterparts of OR. Finally, the P3 evoked by the first standard stimulus after the target showed a significant dishabituation phenomenon which could represent a sign of the local stimulus change. However, it did not reach a sufficient level to trigger an SCR/OR since it did not represent a salient event in the context of the task.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Chung, Jiwon; Yoon, Jung Eun; Park, Soah; Won, Hyunbin; Ha, Suhyun; Koo, Sumin Helen
Design development and evaluation of arm movement-assistive suits for lifting and movement for industrial workers considering wearability Journal Article
In: International Journal of Industrial Ergonomics, vol. 103, pp. 103616, 2024.
@article{chung2024design,
title = {Design development and evaluation of arm movement-assistive suits for lifting and movement for industrial workers considering wearability},
author = {Jiwon Chung and Jung Eun Yoon and Soah Park and Hyunbin Won and Suhyun Ha and Sumin Helen Koo},
doi = {https://doi.org/10.1016/j.ergon.2024.103616},
year = {2024},
date = {2024-08-03},
urldate = {2024-01-01},
journal = {International Journal of Industrial Ergonomics},
volume = {103},
pages = {103616},
publisher = {Elsevier},
abstract = {Wearability of clothing is important for enhancing work efficiency and resistance among industrial workers. In this study, we developed wearable suit designs for shoulder and upper limb support when lifting objects considering the wearability of the user in the development stage. We provide basic data on the wearability of functional clothing and wearable suits, with emphasis on improving safety and work efficiency. Two distinct wearable suit designs, namely long- and short-sleeved, were developed and evaluated with a primary focus on wearer comfort. Employing a comprehensive approach encompassing textile analysis, performance assessment, brainwave investigation, and satisfaction surveys, this study provides objective insights for refining the wearability in wearable suit development. A short-sleeved design is recommended for the development of wearable suits tailored to assist industrial workers in tasks requiring muscle strength for heavy loads and repetitive motions. Our results provide foundational data on the wearability of robotic suits in a bid to enhance the safety and efficiency of industrial workers.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
He, Jiali; Chan, Sunny HW; Lin, Jingxia; Tsang, Hector WH
In: Sleep Medicine, 2024.
@article{he2024integration,
title = {Integration of Tai Chi and repetitive transcranial magnetic stimulation for sleep disturbances in older adults: A pilot randomized controlled trial},
author = {Jiali He and Sunny HW Chan and Jingxia Lin and Hector WH Tsang},
doi = {https://doi.org/10.1016/j.sleep.2024.07.029},
year = {2024},
date = {2024-08-02},
urldate = {2024-01-01},
journal = {Sleep Medicine},
publisher = {Elsevier},
abstract = {Background
The arousal state has been demonstrated to be involved in the fundamental pathophysiological mechanism of sleep disturbances. Tai Chi (TC) and repetitive transcranial magnetic stimulation (rTMS) have been documented to alleviate sleep disturbances by interfering with different arousal components. It is reasonable to assume that combining TC and rTMS could induce synergistic and longer-lasting benefits for sleep disturbances.
Methods
Thirty-eight older community-dwelling people were randomly assigned to one of three groups: TC plus rTMS (n = 12), TC alone (n = 13), and treat-as-usual (TAU) (n = 13). The interventions were conducted three times per week for 4 weeks for the two intervention groups. The primary outcome was the insomnia severity, while the secondary outcomes were the actigraphy-assessed sleep patterns, use of hypnotic medications, mood states, and quality of life. The mediator outcomes included self-reported somatic arousal and cognitive arousal as well as electroencephalogram (EEG)-assessed cortical arousal. The assessments were conducted at baseline (T0), post-intervention (T1), and 3-month follow-up (T2).
Results
Significant improvements in the insomnia severity were observed in the TC plus rTMS group compared with the TAU group at T1 (Cohen’s d = 1.62, p = .003) and T2 (Cohen’s d = 1.97, p < .001). In contrast, significant improvements in the TC alone group were found only at T2 (Cohen’s d = 1.03, p = .010) when compared with the TAU group. Significant interaction effects were noted on the actigraphy-assessed sleep efficiency (p = .015) and total sleep time (p = .004), depression (p = .003) and stress scores (p = .002), and mental function in relation to quality of life (p = .042). However, none of the mediators elucidated how combining TC and rTMS could improve the insomnia severity.
Conclusion
The research findings are expected to guide further clinical practice in the management of sleep disturbances among older adults using various interventions. Future studies are needed to unravel the underlying mechanism and optimize the protocol to maximize the therapeutic benefits.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Please fill out the form and provide a brief description of your application so we can help match you with products that will meet your specific needs.
Please fill out the form and provide a brief description of your application so we can help match you with products that will meet your specific needs.
Please fill out the form and provide a brief description of your application so we can help match you with products that will meet your specific needs.