2024 |
Cha, Seungwoo; Kim, Kyoung Tae; Chang, Won Kee; Paik, Nam-Jong; Choi, Ji Soo; Lim, Hyunmi; Kim, Won-Seok; Ku, Jeonghun Effect of Electroencephalography-based Motor Imagery Neurofeedback on Mu Suppression During Motor Attempt in Patients with Stroke Journal Article In: Journal of NeuroEngineering and Rehabilitation , 2024. Abstract | Links | Tags: BCI, DSI-24, Neurofeedback, Stroke @article{cha2024effect, Objective The primary aims of this study were to explore the neurophysiological effects of motor imagery neurofeedback using electroencephalography (EEG), specifically focusing on mu suppression during serial motor attempts and assessing its potential benefits in patients with subacute stroke. Methods A total of 15 patients with hemiplegia following subacute ischemic stroke were prospectively enrolled in this randomized cross-over study. This study comprised two experiments: neurofeedback and sham. Each experiment included four blocks: three blocks of resting, grasp, resting, and intervention, followed by one block of resting and grasp. During the resting sessions, the participants fixated on a white cross on a black background for 2 minutes without moving their upper extremities. In the grasp sessions, the participants were instructed to grasp and release their paretic hand at a frequency of about 1 Hz for 3 minutes while fixating on the same white cross. During the intervention sessions, neurofeedback involved presenting a punching image with the affected upper limb corresponding to the mu suppression induced by imagined movement, while the sham involved mu suppression of other randomly selected participants 3 minutes. EEG data were recorded during the experiment, and data from C3/C4 and P3/P4 were used for analyses to compare the degree of mu suppression between the neurofeedback and sham conditions. Results Significant mu suppression was observed in the bilateral motor and parietal cortices during the neurofeedback intervention compared with the sham condition across serial sessions (p < 0.001). Following neurofeedback, the real grasping sessions showed progressive strengthening of mu suppression in the ipsilesional motor cortex and bilateral parietal cortices compared to those following sham (p < 0.05), an effect not observed in the contralesional motor cortex. Conclusion Motor imagery neurofeedback significantly enhances mu suppression in the ipsilesional motor and bilateral parietal cortices during motor attempts in patients with subacute stroke. These findings suggest that motor imagery neurofeedback could serve as a promising adjunctive therapy to enhance motor-related cortical activity and support motor rehabilitation in patients with stroke. |
2023 |
Demarest, Phillip; Rustamov, Nabi; Swift, James; Xie, Tao; Adamek, Markus; Cho, Hohyun; Wilson, Elizabeth; Han, Zhuangyu; Belsten, Alexander; Luczak, Nicholas; others, A Novel Theta-Controlled Vibrotactile Brain-Computer Interface To Treat Chronic Pain: A Pilot Study Journal Article In: 2023. Abstract | Links | Tags: BCI, DSI-24, Neurofeedback @article{demarest2023novel, Limitations in chronic pain therapies necessitate novel interventions that are effective, accessible, and safe. Brain-computer interfaces (BCIs) provide a promising modality for targeting neuropathology underlying chronic pain by converting recorded neural activity into perceivable outputs. Recent evidence suggests that increased frontal theta power (4–7 Hz) reflects pain relief from chronic and acute pain. Further studies have suggested that vibrotactile stimulation decreases pain intensity in experimental and clinical models. This longitudinal, non-randomized, open-label pilot study's objective was to reinforce frontal theta activity in six patients with chronic upper extremity pain using a novel vibrotactile neurofeedback BCI system. Patients increased their BCI performance, reflecting thought-driven control of neurofeedback, and showed a significant decrease in pain severity and pain interference scores without any adverse events. Pain relief significantly correlated with frontal theta modulation. These findings highlight the potential of BCI-mediated cortico-sensory coupling of frontal theta with vibrotactile stimulation for alleviating chronic pain. |
2021 |
McLaughlin, Deirdre; Klee, Daniel; Memmott, Tab; Peters, Betts; Wiedrick, Jack; Fried-Oken, Melanie; Oken, Barry Methodology and feasibility of neurofeedback to improve visual attention to letters in mild Alzheimer's disease Journal Article In: Human-Computer Interaction, 2021. Abstract | Links | Tags: DSI-VR300, Neurofeedback @article{mclaughlin2021methodology, Brain computer interfaces systems are controlled by users through neurophysiological input for a variety of applications including communication, environmental control, motor rehabilitation, and cognitive training. Although individuals with severe speech and physical impairment are the primary users of this technology, BCIs have emerged as a potential tool for broader populations, especially with regards to delivering cognitive training or interventions with neurofeedback. The goal of this study was to investigate the feasibility of using a BCI system with neurofeedback as an intervention for people with mild Alzheimer's disease. The study focused on visual attention and language since ad is often associated with functional impairments in language and reading. The study enrolled five adults with mild ad in a nine to thirteen week BCI EEG based neurofeedback intervention to improve attention and reading skills. Two participants completed intervention entirely. The remaining three participants could not complete the intervention phase because of restrictions related to covid. Pre and post assessment measures were used to assess reliability of outcome measures and generalization of treatment to functional reading, processing speed, attention, and working memory skills. Participants demonstrated steady improvement in most cognitive measures across experimental phases, although there was not a significant effect of NFB on most measures of attention. One subject demonstrated significantly significant improvement in letter cancellation during NFB. All participants with mild AD learned to operate a BCI system with training. Results have broad implications for the design and use of bci systems for participants with cognitive impairment. Preliminary evidence justifies implementing NFB-based cognitive measures in AD. |
Jung, Mijung; Lee, Mikyoung The Effect of a Mindfulness-Based Education Program on Brain Waves and the Autonomic Nervous System in University Students Journal Article In: Healthcare 2021, vol. 9, no. 11, pp. 1606, 2021. Abstract | Links | Tags: DSI-24, Neurofeedback @article{jung2021effect, Background: Mindfulness, defined as the awareness emerging from purposefully paying attention to the present moment, has been shown to be effective in reducing stress and, thus, promoting psychological well-being. This study investigated the effects of a mindfulness-based education program on mindfulness, brain waves, and the autonomic nervous system (ANS) in university students in Korea. Methods: This study is a quantitative and experimental research with a single-group pre-post design. Six sessions of mindfulness-based intervention were applied. In total, 42 students completed a mindfulness questionnaire before and after the intervention, and 28 among them completed pre-intervention and post-intervention measures of brain waves and ANS. Results: The level of mindfulness increased in the participants after intervention. Regarding brain waves, the alpha and theta waves increased, but the beta waves decreased. There was no significant difference in the ANS, presenting no change in heart rate variability. Conclusions: We identified the positive effects of the mindfulness-based education program for university students. The findings indicate that this program may help students not only relax, but also generate a mindfulness state in stressful situations, potentially leading to a successful university life. This study can be used as a basis for quality improvement and sustainability of mindfulness-based education programs for university students. |
2024 |
Cha, Seungwoo; Kim, Kyoung Tae; Chang, Won Kee; Paik, Nam-Jong; Choi, Ji Soo; Lim, Hyunmi; Kim, Won-Seok; Ku, Jeonghun Effect of Electroencephalography-based Motor Imagery Neurofeedback on Mu Suppression During Motor Attempt in Patients with Stroke Journal Article In: Journal of NeuroEngineering and Rehabilitation , 2024. @article{cha2024effect, Objective The primary aims of this study were to explore the neurophysiological effects of motor imagery neurofeedback using electroencephalography (EEG), specifically focusing on mu suppression during serial motor attempts and assessing its potential benefits in patients with subacute stroke. Methods A total of 15 patients with hemiplegia following subacute ischemic stroke were prospectively enrolled in this randomized cross-over study. This study comprised two experiments: neurofeedback and sham. Each experiment included four blocks: three blocks of resting, grasp, resting, and intervention, followed by one block of resting and grasp. During the resting sessions, the participants fixated on a white cross on a black background for 2 minutes without moving their upper extremities. In the grasp sessions, the participants were instructed to grasp and release their paretic hand at a frequency of about 1 Hz for 3 minutes while fixating on the same white cross. During the intervention sessions, neurofeedback involved presenting a punching image with the affected upper limb corresponding to the mu suppression induced by imagined movement, while the sham involved mu suppression of other randomly selected participants 3 minutes. EEG data were recorded during the experiment, and data from C3/C4 and P3/P4 were used for analyses to compare the degree of mu suppression between the neurofeedback and sham conditions. Results Significant mu suppression was observed in the bilateral motor and parietal cortices during the neurofeedback intervention compared with the sham condition across serial sessions (p < 0.001). Following neurofeedback, the real grasping sessions showed progressive strengthening of mu suppression in the ipsilesional motor cortex and bilateral parietal cortices compared to those following sham (p < 0.05), an effect not observed in the contralesional motor cortex. Conclusion Motor imagery neurofeedback significantly enhances mu suppression in the ipsilesional motor and bilateral parietal cortices during motor attempts in patients with subacute stroke. These findings suggest that motor imagery neurofeedback could serve as a promising adjunctive therapy to enhance motor-related cortical activity and support motor rehabilitation in patients with stroke. |
2023 |
Demarest, Phillip; Rustamov, Nabi; Swift, James; Xie, Tao; Adamek, Markus; Cho, Hohyun; Wilson, Elizabeth; Han, Zhuangyu; Belsten, Alexander; Luczak, Nicholas; others, A Novel Theta-Controlled Vibrotactile Brain-Computer Interface To Treat Chronic Pain: A Pilot Study Journal Article In: 2023. @article{demarest2023novel, Limitations in chronic pain therapies necessitate novel interventions that are effective, accessible, and safe. Brain-computer interfaces (BCIs) provide a promising modality for targeting neuropathology underlying chronic pain by converting recorded neural activity into perceivable outputs. Recent evidence suggests that increased frontal theta power (4–7 Hz) reflects pain relief from chronic and acute pain. Further studies have suggested that vibrotactile stimulation decreases pain intensity in experimental and clinical models. This longitudinal, non-randomized, open-label pilot study's objective was to reinforce frontal theta activity in six patients with chronic upper extremity pain using a novel vibrotactile neurofeedback BCI system. Patients increased their BCI performance, reflecting thought-driven control of neurofeedback, and showed a significant decrease in pain severity and pain interference scores without any adverse events. Pain relief significantly correlated with frontal theta modulation. These findings highlight the potential of BCI-mediated cortico-sensory coupling of frontal theta with vibrotactile stimulation for alleviating chronic pain. |
2021 |
McLaughlin, Deirdre; Klee, Daniel; Memmott, Tab; Peters, Betts; Wiedrick, Jack; Fried-Oken, Melanie; Oken, Barry Methodology and feasibility of neurofeedback to improve visual attention to letters in mild Alzheimer's disease Journal Article In: Human-Computer Interaction, 2021. @article{mclaughlin2021methodology, Brain computer interfaces systems are controlled by users through neurophysiological input for a variety of applications including communication, environmental control, motor rehabilitation, and cognitive training. Although individuals with severe speech and physical impairment are the primary users of this technology, BCIs have emerged as a potential tool for broader populations, especially with regards to delivering cognitive training or interventions with neurofeedback. The goal of this study was to investigate the feasibility of using a BCI system with neurofeedback as an intervention for people with mild Alzheimer's disease. The study focused on visual attention and language since ad is often associated with functional impairments in language and reading. The study enrolled five adults with mild ad in a nine to thirteen week BCI EEG based neurofeedback intervention to improve attention and reading skills. Two participants completed intervention entirely. The remaining three participants could not complete the intervention phase because of restrictions related to covid. Pre and post assessment measures were used to assess reliability of outcome measures and generalization of treatment to functional reading, processing speed, attention, and working memory skills. Participants demonstrated steady improvement in most cognitive measures across experimental phases, although there was not a significant effect of NFB on most measures of attention. One subject demonstrated significantly significant improvement in letter cancellation during NFB. All participants with mild AD learned to operate a BCI system with training. Results have broad implications for the design and use of bci systems for participants with cognitive impairment. Preliminary evidence justifies implementing NFB-based cognitive measures in AD. |
Jung, Mijung; Lee, Mikyoung The Effect of a Mindfulness-Based Education Program on Brain Waves and the Autonomic Nervous System in University Students Journal Article In: Healthcare 2021, vol. 9, no. 11, pp. 1606, 2021. @article{jung2021effect, Background: Mindfulness, defined as the awareness emerging from purposefully paying attention to the present moment, has been shown to be effective in reducing stress and, thus, promoting psychological well-being. This study investigated the effects of a mindfulness-based education program on mindfulness, brain waves, and the autonomic nervous system (ANS) in university students in Korea. Methods: This study is a quantitative and experimental research with a single-group pre-post design. Six sessions of mindfulness-based intervention were applied. In total, 42 students completed a mindfulness questionnaire before and after the intervention, and 28 among them completed pre-intervention and post-intervention measures of brain waves and ANS. Results: The level of mindfulness increased in the participants after intervention. Regarding brain waves, the alpha and theta waves increased, but the beta waves decreased. There was no significant difference in the ANS, presenting no change in heart rate variability. Conclusions: We identified the positive effects of the mindfulness-based education program for university students. The findings indicate that this program may help students not only relax, but also generate a mindfulness state in stressful situations, potentially leading to a successful university life. This study can be used as a basis for quality improvement and sustainability of mindfulness-based education programs for university students. |
Please fill out the form and provide a brief description of your application so we can help match you with products that will meet your specific needs.
Please fill out the form and provide a brief description of your application so we can help match you with products that will meet your specific needs.