EEG technology can be used for neurofeedback, a technique that allows individuals to self-regulate their brain activity. During neurofeedback sessions, electrodes are placed on the scalp to measure brainwaves, which are then displayed on a monitor or through sound feedback. The individual can observe their brain activity and learn to consciously change it by using various techniques, such as visualization or relaxation. This process can be helpful for individuals with various neurological or psychological conditions, such as ADHD, anxiety, or depression. Neurofeedback has also been shown to improve cognitive performance, including memory, attention, and focus. EEG-based neurofeedback has the advantage of being non-invasive, portable, and customizable, making it a popular tool for both clinical and research settings.
This study aimed to compare electroencephalogram (EEG) patterns in subjects wearing cloth socks embedded with haptic vibrotactile trigger technology with those who wore regular socks. The neuromatrix of pain, which is a network of neuronal pathways and circuits responding to sensory stimulation, was targeted by the technology, and its effects on Brodmann areas associated with pain were examined. The DSI-24 and NeuroGuide software were used to record baseline EEG data from 19 scalp locations in 60 adult subjects. The results showed significant differences in EEG patterns between the two groups, indicating that the technology could potentially be considered a beneficial pain management option for patients.
This study aimed to explore the feasibility of using a BCI system with neurofeedback as an intervention for people with mild Alzheimer’s disease. The study used wearable sensing DSI systems to enroll five adults in a nine to thirteen week EEG-based neurofeedback intervention to improve attention and reading skills. Pre and post assessment measures were used to evaluate the reliability of outcome measures and generalization of treatment to functional reading, processing speed, attention, and working memory skills. Participants demonstrated steady improvement in most cognitive measures across experimental phases, and all participants learned to operate a BCI system with training. The results suggest that NFB-based cognitive measures could be useful in treating mild AD.
The video showcases several customers of the DSI-24 system who use the device for neurofeedback training. The customers express their satisfaction with the ease of use of the system, the quality of the data, and the comfort of the system.
Cha, Seungwoo; Kim, Kyoung Tae; Chang, Won Kee; Paik, Nam-Jong; Choi, Ji Soo; Lim, Hyunmi; Kim, Won-Seok; Ku, Jeonghun
Effect of Electroencephalography-based Motor Imagery Neurofeedback on Mu Suppression During Motor Attempt in Patients with Stroke Journal Article
In: Journal of NeuroEngineering and Rehabilitation , 2024.
@article{cha2024effect,
title = {Effect of Electroencephalography-based Motor Imagery Neurofeedback on Mu Suppression During Motor Attempt in Patients with Stroke},
author = {Seungwoo Cha and Kyoung Tae Kim and Won Kee Chang and Nam-Jong Paik and Ji Soo Choi and Hyunmi Lim and Won-Seok Kim and Jeonghun Ku},
doi = {https://doi.org/10.21203/rs.3.rs-5106561/v1},
year = {2024},
date = {2024-09-26},
urldate = {2024-01-01},
journal = {Journal of NeuroEngineering and Rehabilitation },
abstract = {Objective
The primary aims of this study were to explore the neurophysiological effects of motor imagery neurofeedback using electroencephalography (EEG), specifically focusing on mu suppression during serial motor attempts and assessing its potential benefits in patients with subacute stroke.
Methods
A total of 15 patients with hemiplegia following subacute ischemic stroke were prospectively enrolled in this randomized cross-over study. This study comprised two experiments: neurofeedback and sham. Each experiment included four blocks: three blocks of resting, grasp, resting, and intervention, followed by one block of resting and grasp. During the resting sessions, the participants fixated on a white cross on a black background for 2 minutes without moving their upper extremities. In the grasp sessions, the participants were instructed to grasp and release their paretic hand at a frequency of about 1 Hz for 3 minutes while fixating on the same white cross. During the intervention sessions, neurofeedback involved presenting a punching image with the affected upper limb corresponding to the mu suppression induced by imagined movement, while the sham involved mu suppression of other randomly selected participants 3 minutes. EEG data were recorded during the experiment, and data from C3/C4 and P3/P4 were used for analyses to compare the degree of mu suppression between the neurofeedback and sham conditions.
Results
Significant mu suppression was observed in the bilateral motor and parietal cortices during the neurofeedback intervention compared with the sham condition across serial sessions (p < 0.001). Following neurofeedback, the real grasping sessions showed progressive strengthening of mu suppression in the ipsilesional motor cortex and bilateral parietal cortices compared to those following sham (p < 0.05), an effect not observed in the contralesional motor cortex.
Conclusion
Motor imagery neurofeedback significantly enhances mu suppression in the ipsilesional motor and bilateral parietal cortices during motor attempts in patients with subacute stroke. These findings suggest that motor imagery neurofeedback could serve as a promising adjunctive therapy to enhance motor-related cortical activity and support motor rehabilitation in patients with stroke.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lim, Hyunmi; Jeong, Chang Hyeon; Kang, Youn Joo; Ku, Jeonghun
Attentional State-Dependent Peripheral Electrical Stimulation During Action Observation Enhances Cortical Activations in Stroke Patients Journal Article
In: Cyberpsychology, Behavior, and Social Networking, 2023.
@article{lim2023attentional,
title = {Attentional State-Dependent Peripheral Electrical Stimulation During Action Observation Enhances Cortical Activations in Stroke Patients},
author = {Hyunmi Lim and Chang Hyeon Jeong and Youn Joo Kang and Jeonghun Ku},
doi = {https://doi.org/10.1089/cyber.2022.0176},
year = {2023},
date = {2023-04-20},
urldate = {2023-01-01},
journal = {Cyberpsychology, Behavior, and Social Networking},
publisher = {Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New~…},
abstract = {Brain–computer interface (BCI) is a promising technique that enables patients' interaction with computers or machines by analyzing specific brain signal patterns and provides patients with brain state-dependent feedback to assist in their rehabilitation. Action observation (AO) and peripheral electrical stimulation (PES) are conventional methods used to enhance rehabilitation outcomes by promoting neural plasticity. In this study, we assessed the effects of attentional state-dependent feedback in the combined application of BCI-AO with PES on sensorimotor cortical activation in patients after stroke. Our approach involved showing the participants a video with repetitive grasping actions under four different tasks. A mu band suppression (8–13 Hz) corresponding to each task was computed. A topographical representation showed that mu suppression of the dominant (healthy) and affected hemispheres (stroke) gradually became prominent during the tasks. There were significant differences in mu suppression in the affected motor and frontal cortices of the stroke patients. The involvement of both frontal and motor cortices became prominent in the BCI-AO+triggered PES task, in which feedback was given to the patients according to their attentive watching. Our findings suggest that synchronous stimulation according to patient attention is important for neurorehabilitation of stroke patients, which can be achieved with the combination of BCI-AO feedback with PES. BCI-AO feedback combined with PES could be effective in facilitating sensorimotor cortical activation in the affected hemispheres of stroke patients.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Seo, Seoung Won; Kim, Yong Seong
Stroke Patients: Effects of Combining Sitting Table Tennis Exercise with Neurological Physical Therapy on Brain Waves Journal Article
In: The Journal of Korean Physical Therapy, vol. 35, no. 1, pp. 19–23, 2023.
@article{seo2023stroke,
title = {Stroke Patients: Effects of Combining Sitting Table Tennis Exercise with Neurological Physical Therapy on Brain Waves},
author = {Seoung Won Seo and Yong Seong Kim},
doi = {https://doi.org/10.18857/jkpt.2023.35.1.19},
year = {2023},
date = {2023-02-28},
urldate = {2023-01-01},
journal = {The Journal of Korean Physical Therapy},
volume = {35},
number = {1},
pages = {19--23},
publisher = {The Korea Society of Physical Therapy},
abstract = {Purpose: The purpose of this study is to analyze the brain waves and develop various exercise programs to improve the physical and mental aspects of stroke patients when neurological physical therapy and sitting table tennis exercise are applied to stroke patients.
Methods: In this study, an experiment was conducted on 15 patients diagnosed with stroke, and training was performed after changing the ping-pong table to a sitting position to apply ping-pong exercise to stroke patients. After training was conducted for 40 minutes twice a week for 4 weeks, brain waves were measured before and after. EEG was measured using Laxtha’s DSI-24 equipment as a measurement tool, and data values were extracted through the Telescan program.
Results: Most of the relative beta waves showed a significant difference before and after the intervention. As for the characteristics of beta waves, this result can be seen as being highly activated during exercise or other activities.
Conclusion: Ping-pong exercise in a sitting position is a good intervention method for stroke patients, and it can help to use it as basic data in clinical practice by showing brain activity.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hu, Yuxia; Wang, Yufei; Zhang, Rui; Hu, Yubo; Fang, Mingzhu; Li, Zhe; Shi, Li; Zhang, Yankun; Zhang, Zhong; Gao, Jinfeng; others,
Assessing stroke rehabilitation degree based on quantitative EEG index and nonlinear parameters Journal Article
In: Cognitive Neurodynamics, pp. 1–9, 2022.
@article{hu2022assessing,
title = {Assessing stroke rehabilitation degree based on quantitative EEG index and nonlinear parameters},
author = {Yuxia Hu and Yufei Wang and Rui Zhang and Yubo Hu and Mingzhu Fang and Zhe Li and Li Shi and Yankun Zhang and Zhong Zhang and Jinfeng Gao and others},
url = {https://link.springer.com/article/10.1007/s11571-022-09849-4},
year = {2022},
date = {2022-08-06},
urldate = {2022-01-01},
journal = {Cognitive Neurodynamics},
pages = {1--9},
publisher = {Springer},
abstract = {The assessment of motor function is critical to the rehabilitation of stroke patients. However, commonly used evaluation methods are based on behavior scoring, which lacks neurological indicators that directly reflect the motor function of the brain. The objective of this study was to investigate whether resting-state EEG indicators could improve stroke rehabilitation evaluation. We recruited 68 participants and recorded their resting-state EEG data. According to Brunnstrom stage, the participants were divided into three groups: severe, moderate, and mild. Ten quantitative electroencephalographic (QEEG) and five non-linear parameters of resting-state EEG were calculated for further analysis. Statistical tests were performed, and the genetic algorithm-support vector machine was used to select the best feature combination for classification. We found the QEEG parameters show significant differences in Delta, Alpha1, Alpha2, DAR, and DTABR (P < 0.05) among the three groups. Regarding nonlinear parameters, ApEn, SampEn, Lz, and C0 showed significant differences (P < 0.05). The optimal feature classification combination accuracy rate reached 85.3%. Our research shows that resting-state EEG indicators could be used for stroke rehabilitation evaluation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Humphries, Joseph B; Mattos, Daniela JS; Rutlin, Jerrel; Daniel, Andy GS; Rybczynski, Kathleen; Notestine, Theresa; Shimony, Joshua S; Burton, Harold; Carter, Alexandre; Leuthardt, Eric C
Motor Network Reorganization Induced in Chronic Stroke Patients with the Use of a Contralesionally-Controlled Brain Computer Interface Journal Article
In: Brain-Computer Interfaces, vol. 9, no. 3, pp. 179–192, 2022.
@article{humphries2022motor,
title = {Motor Network Reorganization Induced in Chronic Stroke Patients with the Use of a Contralesionally-Controlled Brain Computer Interface},
author = {Joseph B Humphries and Daniela JS Mattos and Jerrel Rutlin and Andy GS Daniel and Kathleen Rybczynski and Theresa Notestine and Joshua S Shimony and Harold Burton and Alexandre Carter and Eric C Leuthardt},
doi = {https://doi.org/10.1080/2326263X.2022.2057757},
year = {2022},
date = {2022-07-01},
urldate = {2022-01-01},
journal = {Brain-Computer Interfaces},
volume = {9},
number = {3},
pages = {179--192},
publisher = {Taylor & Francis},
abstract = {Upper extremity weakness in chronic stroke remains a problem not fully addressed by current therapies. Brain–computer interfaces (BCIs) engaging the unaffected hemisphere are a promising therapy that are entering clinical application, but the mechanism underlying recovery is not well understood. We used resting state functional MRI to assess the impact a contralesionally driven EEG BCI therapy had on motor system functional organization. Patients used a therapeutic BCI for 12 weeks at home. We acquired resting-state fMRI scans and motor function data before and after the therapy period. Changes in functional connectivity (FC) strength between motor network regions of interest (ROIs) and the topographic extent of FC to specific ROIs were analyzed. Most patients achieved clinically significant improvement. Motor FC strength and topographic extent decreased following BCI therapy. Motor recovery correlated with reductions in motor FC strength across the entire motor network. These findings suggest BCI-mediated interventions may reverse pathologic strengthening of dysfunctional network interactions.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Kim, Min Gyu; Lim, Hyunmi; Lee, Hye Sun; Han, In Jun; Ku, Jeonghun; Kang, Youn Joo
In: Journal of Neural Engineering, vol. 19, no. 3, 2022.
@article{kim2022brain,
title = {Brain--computer interface-based action observation combined with peripheral electrical stimulation enhances corticospinal excitability in healthy subjects and stroke patients},
author = {Min Gyu Kim and Hyunmi Lim and Hye Sun Lee and In Jun Han and Jeonghun Ku and Youn Joo Kang},
url = {https://iopscience.iop.org/article/10.1088/1741-2552/ac76e0/meta?casa_token=MPuDFAHtwF4AAAAA:Q_cSc8qcY0m6fnqiqPpkHv5cAIzKaJBw51nYjwygju0LbXYaujodUGwUy1RjTcbCm-MTN7ZnOg},
year = {2022},
date = {2022-06-20},
urldate = {2022-01-01},
journal = {Journal of Neural Engineering},
volume = {19},
number = {3},
publisher = {IOP Publishing},
abstract = {Objective. Action observation (AO) combined with brain–computer interface (BCI) technology enhances cortical activation. Peripheral electrical stimulation (PES) increases corticospinal excitability, thereby activating brain plasticity. To maximize motor recovery, we assessed the effects of BCI-AO combined with PES on corticospinal plasticity. Approach. Seventeen patients with chronic hemiplegic stroke and 17 healthy subjects were recruited. The participants watched a video of repetitive grasping actions with four different tasks for 15 min: (A) AO alone; (B) AO + PES; (C) BCI-AO + continuous PES; and (D) BCI-AO + triggered PES. PES was applied at the ulnar nerve of the wrist. The tasks were performed in a random order at least three days apart. We assessed the latency and amplitude of motor evoked potentials (MEPs). We examined changes in MEP parameters pre-and post-exercise across the four tasks in the first dorsal interosseous muscle of the dominant hand (healthy subjects) and affected hand (stroke patients). Main results. The decrease in MEP latency and increase in MEP amplitude after the four tasks were significant in both groups. The increase in MEP amplitude was sustained for 20 min after tasks B, C, and D in both groups. The increase in MEP amplitude was significant between tasks A vs. B, B vs. C, and C vs. D. The estimated mean difference in MEP amplitude post-exercise was the highest for A and D in both groups. Significance. The results indicate that BCI-AO combined with PES is superior to AO alone or AO + PES for facilitating corticospinal plasticity in both healthy subjects and patients with stroke. Furthermore, this study supports the idea that synchronized activation of cortical and peripheral networks can enhance neuroplasticity after stroke. We suggest that the BCI-AO paradigm and PES could provide a novel neurorehabilitation strategy for patients with stroke.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Rustamov, Nabi; Humphries, Joseph; Carter, Alexandre; Leuthardt, Eric C
Theta-gamma coupling as a cortical biomarker of brain-computer interface mediated motor recovery in chronic stroke Journal Article
In: Brain Communications, vol. 4, iss. 3, 2022.
@article{rustamov2022thetab,
title = {Theta-gamma coupling as a cortical biomarker of brain-computer interface mediated motor recovery in chronic stroke},
author = {Nabi Rustamov and Joseph Humphries and Alexandre Carter and Eric C Leuthardt},
doi = {https://doi.org/10.1093/braincomms/fcac136},
year = {2022},
date = {2022-05-25},
urldate = {2022-01-01},
journal = {Brain Communications},
volume = {4},
issue = {3},
abstract = {Chronic stroke patients with upper-limb motor disabilities are now beginning to see treatment options that were not previously available. To date, the two options recently approved by the United States Food and Drug Administration include vagus nerve stimulation and brain–computer interface therapy. While the mechanisms for vagus nerve stimulation have been well defined, the mechanisms underlying brain–computer interface-driven motor rehabilitation are largely unknown. Given that cross-frequency coupling has been associated with a wide variety of higher-order functions involved in learning and memory, we hypothesized this rhythm-specific mechanism would correlate with the functional improvements effected by a brain–computer interface. This study investigated whether the motor improvements in chronic stroke patients induced with a brain–computer interface therapy are associated with alterations in phase–amplitude coupling, a type of cross-frequency coupling. Seventeen chronic hemiparetic stroke patients used a robotic hand orthosis controlled with contralesional motor cortical signals measured with EEG. Patients regularly performed a therapeutic brain–computer interface task for 12 weeks. Resting-state EEG recordings and motor function data were acquired before initiating brain–computer interface therapy and once every 4 weeks after the therapy. Changes in phase–amplitude coupling values were assessed and correlated with motor function improvements. To establish whether coupling between two different frequency bands was more functionally important than either of those rhythms alone, we calculated power spectra as well. We found that theta–gamma coupling was enhanced bilaterally at the motor areas and showed significant correlations across brain–computer interface therapy sessions. Importantly, an increase in theta–gamma coupling positively correlated with motor recovery over the course of rehabilitation. The sources of theta–gamma coupling increase following brain–computer interface therapy were mostly located in the hand regions of the primary motor cortex on the left and right cerebral hemispheres. Beta–gamma coupling decreased bilaterally at the frontal areas following the therapy, but these effects did not correlate with motor recovery. Alpha–gamma coupling was not altered by brain–computer interface therapy. Power spectra did not change significantly over the course of the brain–computer interface therapy. The significant functional improvement in chronic stroke patients induced by brain–computer interface therapy was strongly correlated with increased theta–gamma coupling in bihemispheric motor regions. These findings support the notion that specific cross-frequency coupling dynamics in the brain likely play a mechanistic role in mediating motor recovery in the chronic phase of stroke recovery.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lim, Hyunmi; Kim, Won-Seok; Ku, Jeonghun
Transcranial Direct Current Stimulation Effect on Virtual Hand Illusion Journal Article
In: Cyberpsychology, Behavior, and Social Networking, vol. 23, no. 8, pp. 541–549, 2020.
@article{lim2020transcranial,
title = {Transcranial Direct Current Stimulation Effect on Virtual Hand Illusion},
author = {Hyunmi Lim and Won-Seok Kim and Jeonghun Ku},
doi = {https://doi.org/10.1089/cyber.2019.0741},
year = {2020},
date = {2020-08-04},
urldate = {2020-08-04},
journal = {Cyberpsychology, Behavior, and Social Networking},
volume = {23},
number = {8},
pages = {541--549},
publisher = {Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New~…},
abstract = {Virtual reality (VR) is effectively used to evoke the mirror illusion, and transcranial direct current stimulation (tDCS) synergistically facilitates this illusion. This study investigated whether a mirror virtual hand illusion (MVHI) induced by an immersive, first-person-perspective, virtual mirror system could be modulated by tDCS of the primary motor cortex. Fourteen healthy adults (average age 21.86 years ±0.47, seven men and seven women) participated in this study, and they experienced VR with and without tDCS—the tDCS and sham conditions, each of which takes ∼30 minutes—on separate days to allow the washout of the tDCS effect. While experiencing VR, the movements of the virtual left hand reflected the flexion and extension of the real right hand. Subsequently, electroencephalogram was recorded, the magnitude of the proprioceptive shift was measured, and the participants provided responses to a questionnaire regarding hand ownership. A significant difference in the proprioceptive shift was observed between the tDCS and sham conditions. In addition, there was significant suppression of the mu power in Pz, and augmentation of the beta power in the Pz, P4, O1, and O2 channels. The difference in proprioceptive deviation between the two conditions showed significant negative correlation with mu suppression over the left frontal lobe in the tDCS condition. Finally, the question “I felt that the virtual hand was my own hand” received a significantly higher score under the tDCS condition. In short, applying tDCS over the motor cortex facilitates the MVHI by activating the attentional network over the parietal and frontal lobes such that the MVHI induces more proprioceptive drift, which suggests that the combination of VR and tDCS can enhance the immersive effect in VR. This result provides better support for the use of the MVHI paradigm in combination with tDCS for recovery from illnesses such as stroke.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Choi, Hyoseon; Lim, Hyunmi; Kim, Joon Woo; Kang, Youn Joo; Ku, Jeonghun
Brain computer interface-based action observation game enhances mu suppression in patients with stroke Journal Article
In: Electronics, vol. 8, no. 12, pp. 1466, 2019.
@article{choi2019brain,
title = {Brain computer interface-based action observation game enhances mu suppression in patients with stroke},
author = {Hyoseon Choi and Hyunmi Lim and Joon Woo Kim and Youn Joo Kang and Jeonghun Ku},
doi = {https://doi.org/10.3390/electronics8121466},
year = {2019},
date = {2019-12-02},
journal = {Electronics},
volume = {8},
number = {12},
pages = {1466},
publisher = {Multidisciplinary Digital Publishing Institute},
abstract = {Action observation (AO), based on the mirror neuron theory, is a promising strategy to promote motor cortical activation in neurorehabilitation. Brain computer interface (BCI) can detect a user’s intention and provide them with brain state-dependent feedback to assist with patient rehabilitation. We investigated the effects of a combined BCI-AO game on power of mu band attenuation in stroke patients. Nineteen patients with subacute stroke were recruited. A BCI-AO game provided real-time feedback to participants regarding their attention to a flickering action video using steady-state visual-evoked potentials. All participants watched a video of repetitive grasping actions under two conditions: (1) BCI-AO game and (2) conventional AO, in random order. In the BCI-AO game, feedback on participants’ observation scores and observation time was provided. In conventional AO, a non-flickering video and no feedback were provided. The magnitude of mu suppression in the central motor, temporal, parietal, and occipital areas was significantly higher in the BCI-AO game than in the conventional AO. The magnitude of mu suppression was significantly higher in the BCI-AO game than in the conventional AO both in the affected and unaffected hemispheres. These results support the facilitatory effects of the BCI-AO game on mu suppression over conventional AO},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Please fill out the form and provide a brief description of your application so we can help match you with products that will meet your specific needs.
Please fill out the form and provide a brief description of your application so we can help match you with products that will meet your specific needs.