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Abstract  

Suboptimal cognitive states among construction 
workers significantly impact safety and productivity, 
with mental workload playing a key role in triggering 
these states. Determining if the mental workload 
fluctuation is leading to an error is challenging as the 
relationship between mental workload and 
suboptimal cognitive states is complex and non-linear, 
with traditional theories failing to map their 
fluctuations effectively. Recently, a two-dimensional 
space has been introduced to theoretically map 
mental workload fluctuations and suboptimal 
cognitive states using task engagement and arousal. 
However, there is currently no framework in place to 
continuously apply this theoretical knowledge in 
practical settings. To address this gap, this study 
investigates the feasibility of EEG-based frameworks 
for classifying four different cognitive states, namely 
comfort zone, mind wandering, effort withdrawal, 
and inattentional blindness, based on mental 
workload fluctuations. EEG signals were collected 
from 10 participants using a headset with dry 
electrodes, processed to extract relevant features, and 
classified using Support Vector Machine (SVM) and 
Artificial Neural Network (ANN) models. The ANN 
achieved superior performance in k-fold and leave 
one period out validation methods, though accuracy 
declined in leave one subject out validation. These 
findings underscore the potential of EEG-based 
differentiation of cognitive suboptimalities to enhance 
safety and productivity in construction by providing 
crucial information about when construction workers 
are most likely to make cognitive errors, which is 
essential for timely and appropriate interventions. 
Also, the low subject independent accuracy 
emphasizes the need to address individual differences 
in EEG signals for broader applicability. 
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1 Introduction 
Managing workers’ mental workload is a critical aspect 
of construction management [1]. The dynamic nature of 
construction sites often subjects workers to varying 
levels of mental workload, ranging from excessively low 
to overly high. These suboptimal cognitive states 
increase the likelihood of unsafe or erroneous work 
behavior, making it essential to monitor and manage 
mental workload for both safety and productivity. 

Traditionally, mental workload monitoring has been 
conducted through self-assessment methods, such as 
questionnaires and interviews [2,3]. However, these 
methods are highly subject to individuals’ recall bias and 
sporadic due to their invasive nature, making them 
unsuitable for continuous and dynamic monitoring, 
which is critical for understanding the dynamics of 
mental workload oscillation during the ongoing task. To 
address these limitations, neuroergonomics, which is a 
field of research to study human brain function in the 
workplace [4], has been integrated with various 
wearable-based techniques capable of continuous 
monitoring and assessing the mental workload. These 
studies have applied different wearable biosensors, such 
as electrocardiogram (ECG) [5], electroencephalogram 
(EEG) [6], photoplethysmography (PPG) [7], and 
Electrodermal activity (EDA) [8], to measure individuals’ 
mental workload levels during their ongoing tasks. 

The previous efforts have enabled the monitoring of 
changing mental workload levels. For example, [9] 
applied EEG to quantify the construction workers mental 
workload and the findings suggest that Gamma band 
activity of specific EEG channels strongly correlates with 
tasks with high mental demands. However, challenges 
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remain in distinguishing problematically low or high 
levels—those that involve suboptimal cognitive states, 
such as mind wandering and blindness, and increased 
susceptibility to cognitive errors—from 
acceptable/appropriate levels during ongoing field tasks. 
The current literature does not establish thresholds for 
problematic mental workload, leaving no clear reference 
for identifying activities that may induce suboptimal 
cognitive states in workers. This limitation hinders the 
operationalization of biosensor-based mental workload 
monitoring to improve workers’ cognitive states by 
identifying and addressing problematic moments and 
environmental factors likely to cause suboptimal 
cognitive states. 

A recently introduced framework [10] has shown 
potential not only in addressing this limitation, but also 
in enabling the differentiation of different suboptimal 
states for interventions, by characterizing 
problematically low and high mental workload in relation 
to neurophysiological states. The framework, proposed 
by Dehais [10] and his team, reconceptualizes mental 
workload as a transactional interaction between an 
individual and a task’s cognitive demands, influenced by 
intra-individual factors (e.g., emotional states, fatigue) 
and inter-individual variability (e.g., skill levels, 
personality). It categorizes neurophysiological states 
along with their associated suboptimal cognitive states 
and their symptoms that emerge when mental workload 
becomes problematically low or high. Specifically, an 
individual’s neurophysiological state, depending on their 
mental workload, can be mapped onto a two-dimensional 
space defined by task engagement (the cognitive and 
emotional effort invested in achieving task goals) and 
arousal (the physiological readiness to respond to goals 
and external task demands, influenced by inherent traits 
and situational factors). This two-dimensional space is 
divided into four regions: three suboptimal cognitive 
states—Mind Wandering, Effort Withdrawal, and Mind 
Blindness—and one optimal cognitive state (Figure 1). 

Mind Wandering occurs when mental workload is 
excessively low, leading to boredom and a lack of focus 
on the task. Effort Withdrawal and Inattentional 
Blindness, on the other hand, arise from excessively high 
mental workload levels, representing two distinct 
suboptimal states characterized by reduced task 
engagement and diminished awareness of unexpected 
stimuli, respectively. Differentiating these three mental 
workload-related suboptimal cognitive states not only 
enables the detection of problematic mental workload, 
but also provides insights for “state-specific” 
interventions, thereby significantly contributing to the 
field application of the wearable biosensor-based 
neuroergonomic approach. This framework takes a more 
detailed look at mental workload by considering both the 
intensity and quality of cognitive engagement. It offers a 

clearer way to understand how individual cognitive states 
influence performance on complex tasks.  

 
Figure 1. Dehais’s framework characterizing 
mental workload-related suboptimal states [10] 

To effectively implement this sophisticated 
framework in practical settings, an equally advanced 
method of analyzing the collected neurophysiological 
data is essential. In the field of neuroergonomics, 
traditional approaches to analyzing the signals collected 
during cognitive monitoring typically employ either 
post-hoc analysis or machine learning methods. While 
post-hoc analysis has been valuable for in-depth, after-
the-fact evaluations, it does not facilitate the continuous 
and dynamic adjustments needed for ongoing cognitive 
state monitoring. Therefore, the integration of machine 
learning analysis and the new perspective on mental 
workload shows significant potential for effective and 
dynamic monitoring of field works. Despite this potential, 
the feasibility of this framework in accurately identifying 
distinct cognitive states remains untested. This gap 
signifies a crucial missed opportunity for enhancing 
operational efficiency, safety, and worker well-being 
through state-specific cognitive interventions. To address 
this knowledge gap, this study aims to investigate the 
feasibility of developing an EEG-based machine learning 
model that can differentiate between four cognitive states 
derived from the novel perspective on operationalized 
mental workload. 

2 Methods 
To achieve the research objective, a machine learning 

model was developed for classifying different suboptimal 
cognitive states (i.e., Mind Wandering, Effort 
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Withdrawal, and Mind Blindness), along with the 
optimal. To this end, an in-lab data collection was 
structured incorporating the characteristics of the 
suboptimal cognitive states stated in Dehais’s framework 
and conducted. Following this, the data preprocessing 
techniques were employed to ensure the EEG signals 
were clean and reliable. The focus then shifted to the 
feature extraction process, which is crucial for preparing 
the data for effective machine learning analysis and 
classification model development.  

2.1 Data collection 
2.1.1 Participants 

Data were collected from 10 participants aged 20 to 
39 years, comprising 5 females and 5 males. All 
participants reported being in good physical and mental 
health, with no history of neurological disorders. To 
minimize confounding factors, participants were 
instructed to abstain from alcohol for 24 hours before the 
session. Each participant completed only the data 
collection session, with no additional activities scheduled 
before or after. The study protocols were approved by the 
University of Alberta's Research Ethics Board 
(Reference: Pro00135533), and participants provided 
informed consent via an electronic form before starting. 

2.1.2 Tools 

The study employed the DSI-24 dry-electrode EEG 
headset from Wearable Sensing for data acquisition. This 
device was chosen for its practical advantages, including 
reduced setup time, stable signal quality without the need 
for conductive gel, and comfort during extended use.  In 
addition, the patented common-mode follower 
technology in this headset offers near immunity to 
electrical and motion artifact signals during data 
collection [11]. The headset features 19 channels based 
on the 10-20 system, a sampling rate of 300 Hz, and an 
active shielding system to filter environmental noise. 
Wireless data collection ensured flexibility and 
minimized interference during the session. 

The data collection session was designed using the 
PsyToolkit platform [12,13], while the iMotion platform 
was utilized to integrate biosensors and stimuli for 
improved synchronization. This setup enabled the 
efficient execution of complex data collection designs. 

2.1.3 Procedures 

The data collection session involved three cognitive 
tests, each designed to target specific suboptimal 
cognitive states characterized by Dehais’s framework 
[10]. First, an adapted Task-Switching test was used to 
induce inattentional blindness [14]. Participants 
alternated between rules for responding to stimuli, such 
as letters and numbers in a grid, under time constraints. 

The frequent rule changes introduced cognitive demands, 
simulating real-world multitasking challenges. 
Participants had only 4 seconds to respond to each 
stimulus; failing to do so triggered an error message. This 
setup required participants to concentrate intensely at the 
beginning of each block to apply the newly presented rule 
effectively and perform well. The intense focus and task 
engagement accompanied with high cognitive arousal 
due to time constraints, can lead to Inattentional 
blindness and deafness as shown in Figure 1. Each 
participant completed six Task-Switching sessions, each 
lasting 2.5 minutes, with randomized rules for each 
session. Breaks were allowed between sessions if needed.  

The second test was the n-back task [15], designed to 
induce effort withdrawal. Participants were required to 
identify matches in a sequence of stimuli presented a 
specific number of steps (n) earlier, with task difficulty 
increasing incrementally from 1-back to 7-back. When 
the number of steps is higher than 5 the task looks 
impossible to individuals [16] and discourages them from 
fully engaging in the task since achieving the goal seems 
very unlikely. This procedure can induce Effort 
Withdrawal behavior among participants. Four n-back 
tasks were administered, each lasting 2.5 minutes, with 
no breaks between levels to maintain cognitive load and 
push participants toward a mental breaking point. 

The third test was the Sustained Attention to 
Response Task (SART) [17], conducted to induce mind-
wandering. Participants responded to any digit from 1 to 
9 while withholding responses to an exception, the digit 
"3". Participants had 0.9 seconds to respond to the digits, 
and since the target digit was infrequent, they frequently 
had to respond to other stimuli. Over time, this repetitive 
response to non-target digits could become an automatic 
process requiring minimal attention, potentially allowing 
their freed-up focus to drift to other tasks. This cognitive 
shift increases the likelihood of Mind Wandering. Five 
SART sessions were presented toward the end of the 
session, leveraging reduced cognitive arousal after the 
more demanding preceding tasks. Each session lasted 4 
minutes. 

Upon arrival, participants were introduced to the 
biosensors and provided informed consent before setup. 
The tests were conducted in a quiet, isolated room to 
minimize distractions. The entire data collection session, 
including setup and breaks, lasted between 1.5 and 2 
hours. This duration was carefully optimized to minimize 
fatigue while ensuring sufficient data quality and 
variability for the machine learning model. 

2.2 Data preprocessing 
EEG data were continuously recorded throughout the 

session without interruptions. To prepare the data for 
analysis, a 60 Hz notch filter was first applied (to account 
for the powerline frequency in Canada), followed by 
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bandpass filtering between 0.5 Hz and 50 Hz to reduce 
extrinsic artifacts. Despite these preprocessing steps, the 
data remained prone to noise from intrinsic artifacts such 
as eye blinks and muscle movements. To mitigate these, 
Independent Component Analysis (ICA) was employed 
to isolate and remove artifact-related components, 
enhancing the overall signal-to-noise ratio. 

After preprocessing, the data were prepared for 
labelling. Since no self-reported measurements were 
used, the labelling strategy was based on the design and 
cognitive mechanisms of the tasks, supported by previous 
research. Each section’s labelling was validated 
separately to ensure the tasks effectively induced the 
intended cognitive suboptimalities. 

For Task Switching, it was hypothesized that 
participants initially struggle with new rules under time 
constraints but adapt as the session progresses, feeling 
more at ease. Therefore, first 30 seconds of each new trial 
was labelled as inattentional blindness. For effort 
withdrawal, the Task Engagement Index (TEI) was 
calculated during the 1-back, 3-back, 5-back, and 7-back 
tasks. The TEI increased from 1-back to 5-back but 
significantly dropped for the 7-back task, reflecting a 
state of effort withdrawal as participants found the task 
too demanding to complete effectively. Hence, the 7-
back task data were used as effort withdrawal data. 

For SART, errors were captured using a setup where 
an error message was displayed alongside a white box 
with a photodetector attached to the screen. This system 
pinpointed the exact moments when participants made 
errors. Following the methodology of previous studies 
[18], the 5 seconds preceding each error were labeled as 
mind-wandering states. After the error message appeared, 
participants were prompted to refocus and attempt better 
performance, and these moments were labeled as focus 
states. 

2.3 Feature Extraction 
After labeling the data, features were extracted from 

the EEG signals to prepare inputs for the machine 
learning model and analyze signal patterns linked to 
various suboptimal cognitive states. An effective window 
size for EEG data segmentation in cognitive state 
classification is typically determined through trial and 
error and generally ranges from 1 to 12 seconds [19]. The 
optimal window size in this study was found at using a 2-
second window with a 25% overlap to ensure sufficient 
temporal resolution. 

Feature extraction is a critical step in developing 
robust EEG-based machine learning models for 
classifying cognitive states. Selecting features that 
effectively capture the underlying neural dynamics is 
essential for accurate and meaningful classification. 
From the literature, features derived from both time and 
frequency domains, as well as non-linear analyses, have 

demonstrated their effectiveness in distinguishing 
between mental states and cognitive processes. 
Specifically, power spectral features, such as Alpha, Beta, 
Theta, and Delta Power, offer insights into the brain’s 
frequency-specific activities related to relaxation, focus, 
drowsiness, and disengagement, respectively. 
Complementing these, non-linear and time-domain 
measures, such as Higuchi Fractal Dimension and Hjorth 
parameters (Activity, Mobility, and Complexity), 
provide valuable information on neural complexity, brain 
activity levels, cognitive flexibility, and adaptability. 
Together, these features encapsulate the multifaceted 
nature of brain activity, making them a suitable choice 
for the classification of various cognitive states [20].  

A total of eight features were computed for each EEG 
channel: alpha, beta, theta, and delta power bands; 
Higuchi fractal dimension; and Hjorth parameters 
(activity, mobility, and complexity). With 19 channels in 
the EEG system, this resulted in 152 features (8 features 
× 19 channels) being extracted for each window. A 
summary of the selected features, along with the rationale 
for their selection and their significance in EEG signals, 
is presented in Table 1. 

Table 1. Summary of feature selection 

Feature Description 

Alpha 
Power 

Represents relaxed but wakeful states 
and reduced sensory input, typically 
decreasing with increased cognitive 

load 

Beta Power Linked to focus, problem-solving, and 
sustained attention, often increasing 

with cognitive effort 

Theta 
Power 

Associated with drowsiness and 
working memory, helpful in 

identifying low vigilance or mental 
fatigue 

Delta 
Power 

Indicates low-frequency activity often 
tied to relaxation or cognitive 

disengagement in awake individuals 

Higuchi 
Fractal 

Dimension 
(HFD) 

Captures neural complexity, with 
higher values reflecting increased 

cognitive processing 

Hjorth 
Activity 

Reflects overall brain activity levels, 
useful for assessing mental workload 

or stress 

Hjorth 
Mobility 

Represents frequency variability, 
linked to cognitive flexibility 

Hjorth Indicates adaptability and mental 
engagement, highlighting the temporal 
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Complexity intricacy of brain activity 

These features provide a comprehensive 
representation of brain dynamics, enabling the model to 
differentiate between distinct cognitive suboptimalities 
effectively. 

2.4 Multiclass classification of suboptimal 
cognitive states 

After completing the feature extraction and labelling 
stages, a feature matrix and a target matrix were 
constructed to train machine learning models for 
classifying various suboptimal cognitive states: Mind 
Wandering, Effort Withdrawal, Inattentional Blindness, 
and the Comfort Zone.  

In this study, Support Vector Machines (SVM) and 
Artificial Neural Networks (ANN) were utilized to 
classify EEG-based cognitive states due to their 
complementary capabilities in processing complex, high-
dimensional data. SVM was employed for its 
effectiveness in identifying nonlinear decision 
boundaries and its suitability for smaller datasets, 
leveraging kernel functions to map EEG data into higher-
dimensional spaces for enhanced separability. Fully 
connected ANN was selected for its capacity to model 
intricate patterns and automatically learn features from 
EEG signals, accommodating the data’s non-stationary 
and multivariate characteristics. Both models were 
trained and evaluated on preprocessed EEG data to 
compare their classification performance across different 
cognitive states. 

In machine learning research, validation methods 
play a crucial role in assessing the generalizability of 
models to unseen data [21,22]. Among the commonly 
used approaches is K-Fold Cross-Validation (KFCV), 
which splits the dataset into k equal-sized subsets or 
“folds.” The model is trained on k-1 folds and tested on 
the remaining fold, cycling through until each subset has 
been used for testing. While this method is efficient and 
widely applicable, it assumes independence between data 
points. This assumption can lead to overestimation of 
model performance, particularly when applied to time-
series or biosignal data, where neighboring data points 
are inherently correlated. The result of this validation 
method is used as a benchmark to compare the developed 
model with existing studies since this validation method 
is frequently used in the current literature [19,23].  

The second method, Leave-One-Period-Out Cross 
Validation (LOPOCV), is designed to evaluate the 
generalizability of machine learning models across 
different environmental or contextual factors. In this 
approach, the dataset is divided so that data from one 
specific context—such as a particular environmental 
condition, task type, or experimental setup—is 
completely excluded during training and reserved for 

testing. This process is repeated iteratively, with each 
context taking a turn as the test set, ensuring that every 
context is evaluated independently. 

Finally, Leave-One-Subject-and-Context-Out Cross-
Validation (LOSCOCV) [24] was used to ensures both 
subject and context independence. By excluding data 
from one subject and one context during training and 
using them for testing, LOSCOCV provides a more 
stringent evaluation of generalizability. This method is 
particularly suited for biosignal research, where both 
individual and contextual variability significantly 
influence the data. Incorporating these three validation 
methods into the methodology ensures a comprehensive 
evaluation of model performance and generalizability 
under varying conditions.  

To optimize performance, hyperparameter tuning was 
conducted for both the SVM and ANN models. The 
holdout method was employed for this process, with 8 
subjects used for training and 2 set aside as the validation 
dataset. Models were trained and tested on this subset to 
identify the best hyperparameters, which were 
subsequently applied to the full dataset of 10 subjects. 
The selected hyperparameters ensured the models 
achieved robust performance across all validation 
methods. 

3 Results 
The classification models were trained using the 

SVM and ANN algorithms, with hyperparameters 
optimized to achieve the best performance. The 
implemented ANN has a fully connected architecture 
with 3 hidden layers and 2 drop out layers. The 
hyperparameters were determined using a grid search 
method. Final architecture and hyperparameter setting of 
SVM and ANN are presented presented in Table 2.   

Table 2. Hyper parameter tunning results 

Model Hyperparameter and Architecture 
SVM Kernel: RBF 

C: 10 / Gamma: 0.1 
ANN Input layer: 152 neurons 

1st Hidden layer: 100 neurons 
1st Dropout layer: 15 percent 
2nd Hidden layer: 100 neurons 
2nd Dropout layer: 15 percent 
3rd Hidden layer: 75 neurons 
Output layer: 4 neurons 

Model performance was evaluated using three 
validation methods—KFCV, LOPOCV, and 
LOSCOCV—and the results are presented in Table 3. 
The ANN outperformed the SVM across all validation 
methods, achieving the highest accuracy in both KFCV 
and LOPOCV validations. These results align with 
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previous studies that differentiate between levels of 
specific cognitive suboptimalities, providing benchmarks 
for comparison. Importantly, this study highlights the 
challenge of achieving high accuracy in LOSCOCV 
models, a critical area for future research and practical 
applications. 

Table 3. Accuracy of different models for each 
validation method 

Model Validation method 
 KFCV LOPOCV LOSCOCV 
 Acc F1 Acc F1 Acc F1 

SVM 0.62 0.62 0.58 0.59 0.24 0.10 
ANN 0.72 0.71 0.68 0.65 0.27 0.24 
* ACC: classification accuracy 

4 Discussion 
Traditional approaches to mental workload have 

faced challenges in distinguishing various suboptimal 
cognitive states, as the relationship between mental 
workload and cognitive errors induced by these states 
remained unclear. Recently, new perspectives have 
emerged, focusing on measuring task engagement and 
arousal to map suboptimal cognitive states related to 
mental workload, opening new opportunities to enhance 
field applicability. This study explores the feasibility of 
this approach by employing a neuroergonomic 
framework to map suboptimal cognitive states resulting 
from excessive mental workload. A machine learning 
model was developed to classify four distinct cognitive 
states using features extracted from EEG signals. 

The study classifies cognitive comfort zone, mind 
wandering, inattentional blindness, and effort withdrawal 
with acceptable accuracy. Given that the task involves a 
4-class classification, accuracies above 0.7 can be 
considered promising. Both classification accuracy and 
F1-scores were reported to mitigate the effects of data 
imbalance and validate the performance of the models. 
Among the models tested, the ANN trained with 
extracted features outperformed the SVM, achieving the 
highest accuracy. This result aligns with expectations, 
given the ANN's ability to handle the high number of 
features and capture complex relationships between input 
data and cognitive state labels. While the SVM 
demonstrated reasonable performance, its simpler 
architecture limits its ability to manage the intricacies of 
the dataset compared to the ANN. 

Accuracy decreased as validation methods introduced 
greater independence across time periods or subjects, 
highlighting the challenges of generalization. However, 
the ANN demonstrated robust performance under 
LOPOCV, showcasing its potential for generalization 
within the same participant group. This validation 

method ensures that testing occurs on unseen time 
periods and data collection sessions, meaning the model 
can differentiate classes with acceptable precision even 
when the participant remains the same but the data 
collection setup changes. However, the accuracy for 
LOSCOCV was notably low across all models, 
underscoring the difficulty of achieving generalizability 
across different individuals. This limitation highlights the 
need for additional labeled data from new subjects to 
train models effectively, a process that is both time-
consuming and inefficient. 

This study demonstrates the feasibility of using 
machine learning combined with EEG-extracted features 
to classify cognitive states, including both the comfort 
zone and cognitive suboptimalities. This framework 
holds significant potential for continuous, dynamic 
monitoring of construction field workers with minimal 
invasiveness and without disrupting their tasks. Its 
neuroergonomic foundation enhances reliability by 
leveraging data directly from the central nervous system. 

The benefits of such a framework are multifaceted. It 
enables timely interventions to mitigate risks associated 
with cognitive suboptimalities, thereby reducing 
cognitive errors and enhancing worker safety and 
performance. Furthermore, it offers indirect applications, 
such as integration with geographic information systems 
(GIS) or eye-tracking data for hotspot analyses. This 
integration can help identify areas or environmental 
factors where cognitive suboptimalities frequently occur, 
facilitating targeted interventions to improve workplace 
conditions. 

This study sets a benchmark for multiclass 
classification of cognitive suboptimalities but has some 
limitations that need further exploration. First, the tested 
framework shows low generalizability across different 
subjects, which means there is a need to individualize the 
model for each user or increase the dataset diversity by 
data augmentation. Second, the proposed technique 
requires extensive labelled data collection eliciting 
cognitive suboptimalities, highlighting the need for a 
combination of improved protocols and techniques that 
reduce the reliance on learning from scratch to quickly 
build more reliable datasets. This prolonged data 
collection process means the developed model may 
require many hours of data acquisition and 
hyperparameter tuning whenever a new user is 
introduced, significantly increasing implementation time 
and effort. Third, as the models were developed and 
tested with data collected in a controlled environment, 
the additional finetuning and/or validation might be 
required in more realistic work scenarios to examine the 
field applicability. 

Given the lack of a clear solution in the current 
literature for developing a generalizable model across 
individuals and the absence of a comprehensive dataset 
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with sufficient representation from diverse demographic 
groups, future research should explore strategies to 
simplifying the data collection and hyperparameter 
tuning process for new users. Reducing the time required 
for these tasks would enhance the framework’s cost-
effectiveness and scalability, opening new possibilities 
for industrial applications. 

Addressing this technical challenge is crucial because 
the practical use of current EEG-based models is 
hindered by their limited subject independence. Future 
studies need to focus on enhancing subject independence 
to facilitate wider use and real-world implementation of 
these models. 

5 Conclusion 
This study demonstrates the feasibility of using 

mobile EEG-based machine learning models to detect 
and classify suboptimal cognitive states, highly relevant 
to construction workers’ cognitive errors in the field. By 
leveraging neuroergonomic principles and advanced 
validation methods, the proposed framework 
successfully differentiates between four distinct 
cognitive states: mind wandering, inattentional blindness, 
effort withdrawal, and the comfort zone. Among the 
models tested, the ANN consistently outperformed the 
SVM in classification tasks, demonstrating superior 
capability in handling high-dimensional EEG data and 
capturing complex relationships. The findings 
underscore the potential of EEG-based frameworks for 
real-time and continuous monitoring of cognitive states 
in demanding environments like construction, with 
minimal invasiveness and without disrupting workers’ 
tasks. 

Despite its success, the study also identifies 
significant challenges, particularly in achieving 
generalizability across individuals. Accuracy decreased 
when validation methods introduced greater 
independence across subjects or contexts, highlighting 
the need for extensive retraining with new user-specific 
data. This limitation points to a critical area for future 
research: enhancing model generalizability to enable 
broader applicability without compromising accuracy. 
Additionally, the time-intensive process of collecting 
labeled data and tuning model hyperparameters further 
underscores the necessity of more efficient protocols and 
comprehensive datasets representing diverse 
demographics. 

The implications of this work are both immediate and 
far-reaching. In the short term, the framework offers a 
robust tool for identifying cognitive suboptimalities in 
real-time, enabling timely interventions to mitigate risks, 
reduce cognitive errors, and improve worker safety and 
performance. In the long term, its integration with other 
technologies, such as GIS or eye-tracking systems, could 

provide actionable insights into environmental factors 
that contribute to cognitive errors. This integration could 
facilitate targeted interventions to optimize workplace 
conditions and enhance overall productivity. 

Future research should focus on addressing these 
limitations by improving data collection, developing 
generalizable models that work across individuals and 
contexts, and validating the framework in larger and 
more diverse populations. Expanding its practical 
applications to other industries and refining its usability 
for real-world conditions could further enhance its 
impact. This study establishes a critical foundation for 
EEG-based neuroergonomic frameworks, advancing our 
ability to monitor and manage mental workload 
dynamically and effectively in the field settings. 

Acknowledgement 
This work was supported by the University of Alberta 

Research Exploration Funds, the Construction 
Innovation Centre, and the New Frontiers in Research 
Fund (NFRF), grant number NFRFE-2023-00174. The 
authors also wish to thank their industry partners for their 
support in data collection, as well as the anonymous 
participants who contributed their time and insights. 

References 
[1] J. Chen, X. Song, Z. Lin, Revealing the 

“Invisible Gorilla” in construction: Estimating 
construction safety through mental workload 
assessment, Autom Constr 63 (2016) 173–183. 
https://doi.org/10.1016/J.AUTCON.2015.12.01
8. 

[2] W. Umer, H. Li, Y. Yantao, M.F. Antwi-Afari, S. 
Anwer, X. Luo, Physical exertion modeling for 
construction tasks using combined 
cardiorespiratory and thermoregulatory 
measures, Autom Constr 112 (2020) 103079. 
https://doi.org/https://doi.org/10.1016/j.autcon.2
020.103079. 

[3] H.J. Michielsen, J. De Vries, G.L. Van Heck, 
Psychometric qualities of a brief self-rated 
fatigue measure: The Fatigue Assessment Scale, 
J Psychosom Res 54 (2003) 345–352. 
https://doi.org/10.1016/S0022-3999(02)00392-6. 

[4] R. Parasuraman, M. Rizzo, Neuroergonomics: 
The brain at work, Oxford University Press, 2006. 

[5] H. Qu, X. Gao, L. Pang, Classification of mental 
workload based on multiple features of ECG 
signals, Inform Med Unlocked 24 (2021) 100575. 
https://doi.org/https://doi.org/10.1016/j.imu.202
1.100575. 

[6] W.K.Y. So, S.W.H. Wong, J.N. Mak, R.H.M. 
Chan, An evaluation of mental workload with 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

79



frontal EEG, PLoS One 12 (2017) e0174949. 
https://doi.org/https://doi.org/10.1371/journal.po
ne.0174949. 

[7] W.-K. Beh, Y.-H. Wu, A.-Y. Wu, Robust PPG-
based mental workload assessment system using 
wearable devices, IEEE J Biomed Health Inform 
27 (2021) 2323–2333. 
https://doi.org/10.1109/JBHI.2021.3138639. 

[8] C. Lee, M.J. Shin, D. Eniyandunmo, A. Anwar, 
E. Kim, K. Kim, J.K. Yoo, C. Lee, Predicting 
Driver’s mental workload using physiological 
signals: A functional data analysis approach, 
Appl Ergon 118 (2024). 
https://doi.org/10.1016/j.apergo.2024.104274. 

[9] J. Chen, J.E. Taylor, S. Comu, Assessing Task 
Mental Workload in Construction Projects: A 
Novel Electroencephalography Approach, J 
Constr Eng Manag 143 (2017). 
https://doi.org/10.1061/(asce)co.1943-
7862.0001345. 

[10] F. Dehais, A. Lafont, R. Roy, S. Fairclough, A 
Neuroergonomics Approach to Mental Workload, 
Engagement and Human Performance, Front 
Neurosci 14 (2020). 
https://doi.org/10.3389/fnins.2020.00268. 

[11] Y. Mahdid, U. Lee, S. Blain-Moraes, Assessing 
the quality of wearable EEG systems using 
functional connectivity, IEEE Access 8 (2020) 
193214–193225. 
https://doi.org/10.1109/ACCESS.2020.3033472. 

[12] G. Stoet, PsyToolkit: A software package for 
programming psychological experiments using 
Linux, Behav Res Methods 42 (2010) 1096–
1104. https://doi.org/10.3758/BRM.42.4.1096. 

[13] G. Stoet, PsyToolkit: A Novel Web-Based 
Method for Running Online Questionnaires and 
Reaction-Time Experiments, Teaching of 
Psychology 44 (2017) 24–31. 
https://doi.org/10.1177/0098628316677643. 

[14] S. Monsell, Task switching, Trends Cogn Sci 7 
(2003) 134–140. https://doi.org/10.1016/S1364-
6613(03)00028-7. 

[15] M.J. Kane, A.R.A. Conway, T.K. Miura, G.J.H. 
Colflesh, Working memory, attention control, 
and the N-back task: a question of construct 
validity., J Exp Psychol Learn Mem Cogn 33 
(2007) 615. 
https://doi.org/https://psycnet.apa.org/doi/10.10
37/0278-7393.33.3.615. 

[16] S.H. Fairclough, L.J. Moores, K.C. Ewing, J. 
Roberts, Measuring task engagement as an input 
to physiological computing, in: 2009 3rd 
International Conference on Affective 
Computing and Intelligent Interaction and 

Workshops, 2009: pp. 1–9. 
https://doi.org/10.1109/ACII.2009.5349483. 

[17] I.H. Robertson, T. Manly, J. Andrade, B.T. 
Baddeley, J. Yiend, Oops!’: performance 
correlates of everyday attentional failures in 
traumatic brain injured and normal subjects, 
Neuropsychologia 35 (1997) 747–758. 
https://doi.org/https://doi.org/10.1016/S0028-
3932(97)00015-8. 

[18] C. Braboszcz, A. Delorme, Lost in thoughts: 
Neural markers of low alertness during mind 
wandering, Neuroimage 54 (2011) 3040–3047. 
https://doi.org/10.1016/J.NEUROIMAGE.2010.
10.008. 

[19] H. Jebelli, S. Hwang, S.H. Lee, EEG-based 
workers’ stress recognition at construction sites, 
Autom Constr 93 (2018) 315–324. 
https://doi.org/10.1016/J.AUTCON.2018.05.02
7. 

[20] J. Ruiz de Miras, A.J. Ibáñez-Molina, M.F. 
Soriano, S. Iglesias-Parro, Schizophrenia 
classification using machine learning on resting 
state EEG signal, Biomed Signal Process Control 
79 (2023). 
https://doi.org/10.1016/j.bspc.2022.104233. 

[21] M. Shahrokhishahraki, M. Malekpour, S. 
Mirvalad, G. Faraone, Machine learning 
predictions for optimal cement content in 
sustainable concrete constructions, Journal of 
Building Engineering 82 (2024). 
https://doi.org/10.1016/j.jobe.2023.108160. 

[22] V. Asghari, M. Hossein Kazemi, M. 
Shahrokhishahraki, P. Tang, A. Alvanchi, S.-C. 
Hsu, Process-oriented guidelines for systematic 
improvement of supervised learning research in 
construction engineering, Advanced Engineering 
Informatics 58 (2023) 102215. 
https://doi.org/10.1016/j.aei.2023.102215. 

[23] I. Mehmood, H. Li, Y. Qarout, W. Umer, S. 
Anwer, H. Wu, M. Hussain, M. Fordjour Antwi-
Afari, Deep learning-based construction 
equipment operators’ mental fatigue 
classification using wearable EEG sensor data, 
Advanced Engineering Informatics 56 (2023). 
https://doi.org/10.1016/j.aei.2023.101978. 

[24] G. Lee, S. Lee, Importance of testing with 
independent subjects and contexts for machine-
learning models to monitor construction workers’ 
psychophysiological responses, J Constr Eng 
Manag 148 (2022) 04022082. 
https://doi.org/10.1061/(ASCE)CO.1943-
7862.0002341. 

  

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

80



Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


