Exploring Neuroplasticity in Acute Mild Traumatic Brain Injury
Xianghong Arakaki1, Michael Shoga1, Lianyang Li2, George Zouridakis2, Ramona Rostami1, Robert Goldweber2, Michael Harrington1.
1HMRI, Pasadena, CA, 91101; 2University of Houston, Houston, TX; 3HMH, Pasadena, CA

BACKGROUND
- mTBI: affects mental state and possibly consciousness level
- often underdiagnosed and untreated because of
- lack of apparent external injuries and clear pathological findings
- need for sensitive and objective test
- EEG:
 - noninvasive, readily available, and sensitive to brain function
 - may provide tests to detect mTBI
- N-back paradigm: behavioral task to measure working memory (WM).
- fMRI findings: WM impaired in mTBI patients.

METHODS
- Study participants: 13 acute mTBI patients and 7 controls (non-head-trauma patients) recruited from the emergency department of Huntington Memorial Hospital in Pasadena, CA.
- Control and mTBI subjects matched on age, sex, education, and body mass index (BMI).
- Three repeat sessions: within 1 week of injury, 14 days, and 30 days after injury.

OBJECTIVE
Identify changes in evoked and induced alpha EEG activity in a visual n-back WM paradigm and compare the mTBI patients with controls.

RESULTS
- Alpha power:
 - increased work load associated with greater alpha desynchronization
 - Alpha power includes total power (Tp), non-phase-locked (NPp), and phase-locked (evoked) power (Pp)
 - induced alpha increases during internally directed attention

- EEG data recorded using dry electrode headset (Guerar Wearable Sensing, DSI-24).
- Time-Frequency Power Analysis: EEG preprocessing included bandpass filtering (0.1-30 Hz), segmentation, and independent component analysis to remove “noisy” trials using Matlab, EEGlab, and in-house developed software.

- Individual trials were decomposed into their time-frequency representation via wavelet convolution performed in the frequency domain.
- Power values were normalized to the average prestimulus baseline power at each frequency band.
- The alpha power (8-15Hz) in the interval 200-800ms poststimulus was computed for all subjects, including Tp, NPp, and Pp.

- Statistics: used the student t-test to compare the two groups, unless otherwise stated.

SUMMARY & DISCUSSION
- mTBI: affects mental state and possibly consciousness level.
- Often underdiagnosed and untreated because of the lack of apparent external injuries and clear pathological findings.
- Need for sensitive and objective test.
- EEG: noninvasive, readily available, and sensitive to brain function. May provide tests to detect mTBI.
- N-back paradigm: behavioral task to measure working memory (WM).
- fMRI findings: WM impaired in mTBI patients.

- Study participants: 13 acute mTBI patients and 7 controls (non-head-trauma patients). Recruited from the emergency department of Huntington Memorial Hospital in Pasadena, CA.
- Control and mTBI subjects matched on age, sex, education, and body mass index (BMI).
- Three repeat sessions: within 1 week of injury, 14 days, and 30 days after injury.

- Objectives:
 - Identify changes in evoked and induced alpha EEG activity in a visual n-back WM paradigm and compare the mTBI patients with controls.

- METHODS
 - Study participants: 13 acute mTBI patients and 7 controls (non-head-trauma patients).
 - Recruited from the emergency department of Huntington Memorial Hospital in Pasadena, CA.
 - Control and mTBI subjects matched on age, sex, education, and body mass index (BMI).
 - Three repeat sessions: within 1 week of injury, 14 days, and 30 days after injury.

- RESULTS
 - Alpha power:
 - Increased work load associated with greater alpha desynchronization.
 - Alpha power includes total power (Tp), non-phase-locked (NPp), and phase-locked (evoked) power (Pp).
 - Induced alpha increases during internally directed attention.

- EEG data recorded using dry electrode headset (Guerar Wearable Sensing, DSI-24).
- Time-Frequency Power Analysis: EEG preprocessing included bandpass filtering (0.1-30 Hz), segmentation, and independent component analysis to remove "noisy" trials using Matlab, EEGlab, and in-house developed software.

- Individual trials were decomposed into their time-frequency representation via wavelet convolution performed in the frequency domain.
- Power values were normalized to the average prestimulus baseline power at each frequency band.
- The alpha power (8-15Hz) in the interval 200-800ms poststimulus was computed for all subjects, including Tp, NPp, and Pp.

- Statistics: used the student t-test to compare the two groups, unless otherwise stated.

- RESULTS
 - Alpha power:
 - Increased work load associated with greater alpha desynchronization.
 - Alpha power includes total power (Tp), non-phase-locked (NPp), and phase-locked (evoked) power (Pp).
 - Induced alpha increases during internally directed attention.

- EEG data recorded using dry electrode headset (Guerar Wearable Sensing, DSI-24).
- Time-Frequency Power Analysis: EEG preprocessing included bandpass filtering (0.1-30 Hz), segmentation, and independent component analysis to remove "noisy" trials using Matlab, EEGlab, and in-house developed software.

- Individual trials were decomposed into their time-frequency representation via wavelet convolution performed in the frequency domain.
- Power values were normalized to the average prestimulus baseline power at each frequency band.
- The alpha power (8-15Hz) in the interval 200-800ms poststimulus was computed for all subjects, including Tp, NPp, and Pp.

- Statistics: used the student t-test to compare the two groups, unless otherwise stated.

- RESULTS
 - Alpha power:
 - Increased work load associated with greater alpha desynchronization.
 - Alpha power includes total power (Tp), non-phase-locked (NPp), and phase-locked (evoked) power (Pp).
 - Induced alpha increases during internally directed attention.

- EEG data recorded using dry electrode headset (Guerar Wearable Sensing, DSI-24).
- Time-Frequency Power Analysis: EEG preprocessing included bandpass filtering (0.1-30 Hz), segmentation, and independent component analysis to remove "noisy" trials using Matlab, EEGlab, and in-house developed software.

- Individual trials were decomposed into their time-frequency representation via wavelet convolution performed in the frequency domain.
- Power values were normalized to the average prestimulus baseline power at each frequency band.
- The alpha power (8-15Hz) in the interval 200-800ms poststimulus was computed for all subjects, including Tp, NPp, and Pp.

- Statistics: used the student t-test to compare the two groups, unless otherwise stated.

REFERENCES

ACKNOWLEDGEMENTS
This work was supported by D.O.D. grant W81XWH-13-1-0005.
2. Special thanks to Thao Tran, David Strickland, Dalo Tili, Megan Gomez, Jessica Dawlaty, and Alfred Fontan for their help with data collection and Ryan Lee and Liu Yu for their help with Matlab.

Funding by D.O.D. W81XWH-13-1-0005. Please contact Dr. Arakaki xianghong@hmri.org or Dr. Harrington mghworks@hmri.org with any comments. http://www.hmri.org